E-Print Archive

There are 3969 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms View all abstracts by submitter

Bill Swalwell   Submitted: 2017-11-30 04:49

Solar energetic particle (SEP) events are known to occur following solar flares and coronal mass ejections (CMEs). However some high-energy solar events do not result in SEPs being detected at Earth, and it is these types of event which may be termed "false alarms". We define two simple SEP forecasting algorithms based upon the occurrence of a magnetically well-connected CME with a speed in excess of 1500 km s-1 ("a fast CME") or a well-connected X-class flare and analyse them with respect to historical data sets. We compare the parameters of those solar events which produced an enhancement of >40 MeV protons at Earth ("an SEP event") and the false alarms. We find that an SEP forecasting algorithm based solely upon the occurrence of a well-connected fast CME produces fewer false alarms (28.8%) than one based solely upon a well-connected X-class flare (50.6%). Both algorithms fail to forecast a relatively high percentage of SEP events (53.2% and 50.6% respectively). Our analysis of the historical data sets shows that false alarm X-class flares were either not associated with any CME, or were associated with a CME slower than 500 km s-1; false alarm fast CMEs tended to be associated with flares of class less than M3. A better approach to forecasting would be an algorithm which takes as its base the occurrence of both CMEs and flares. We define a new forecasting algorithm which uses a combination of CME and flare parameters and show that the false alarm ratio is similar to that for the algorithm based upon fast CMEs (29.6%), but the percentage of SEP events not forecast is reduced to 32.4%. Lists of the solar events which gave rise to >40 MeV protons and the false alarms have been derived and are made available to aid further study.

Authors: Swalwell, B., Dalla, S., Walsh, R.
Projects: None

Publication Status: Published in Solar Physics 292:173 (2017)
Last Modified: 2017-11-30 11:56
Go to main E-Print page   	Heating and cooling of coronal loops with turbulent suppression of parallel heat conduction  Fluting Modes in Transversely Nonuniform Solar Flux Tubes  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University