E-Print Archive

There are 3928 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms View all abstracts by submitter

Bill Swalwell   Submitted: 2017-11-30 04:49

Solar energetic particle (SEP) events are known to occur following solar flares and coronal mass ejections (CMEs). However some high-energy solar events do not result in SEPs being detected at Earth, and it is these types of event which may be termed "false alarms". We define two simple SEP forecasting algorithms based upon the occurrence of a magnetically well-connected CME with a speed in excess of 1500 km s-1 ("a fast CME") or a well-connected X-class flare and analyse them with respect to historical data sets. We compare the parameters of those solar events which produced an enhancement of >40 MeV protons at Earth ("an SEP event") and the false alarms. We find that an SEP forecasting algorithm based solely upon the occurrence of a well-connected fast CME produces fewer false alarms (28.8%) than one based solely upon a well-connected X-class flare (50.6%). Both algorithms fail to forecast a relatively high percentage of SEP events (53.2% and 50.6% respectively). Our analysis of the historical data sets shows that false alarm X-class flares were either not associated with any CME, or were associated with a CME slower than 500 km s-1; false alarm fast CMEs tended to be associated with flares of class less than M3. A better approach to forecasting would be an algorithm which takes as its base the occurrence of both CMEs and flares. We define a new forecasting algorithm which uses a combination of CME and flare parameters and show that the false alarm ratio is similar to that for the algorithm based upon fast CMEs (29.6%), but the percentage of SEP events not forecast is reduced to 32.4%. Lists of the solar events which gave rise to >40 MeV protons and the false alarms have been derived and are made available to aid further study.

Authors: Swalwell, B., Dalla, S., Walsh, R.
Projects: None

Publication Status: Published in Solar Physics 292:173 (2017)
Last Modified: 2017-11-30 11:56
Go to main E-Print page   	Heating and cooling of coronal loops with turbulent suppression of parallel heat conduction  Fluting Modes in Transversely Nonuniform Solar Flux Tubes  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging
The Minimum Energy Principle Applied to Parker's Coronal Braiding and Nanoflaring Scenario
Eruptions from quiet Sun coronal bright points. I. Observations
Evolution of the transverse density structure of oscillating coronal loops inferred by forward modelling of EUV intensity
Non-stationary quasi-periodic pulsations in solar and stellar flares
Lost and found sunquake in the 6 September 2011 flare caused by beam electrons
Nonkinematic solar dynamo models with double-cell meridional circulation
Solar Kinetic Energy and Cross Helicity Spectra
Collective Study of Polar Crown Filaments in the Past Four Solar Cycles
Highly Ionized Calcium and Argon X-ray Spectra from a Large Solar Flare
Detecting the solar new magnetic flux regions on the base of vector magnetograms
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption
ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University