E-Print Archive

There are 3813 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Reconnection fluxes in eruptive and confined flares and implications for superflares on the Sun View all abstracts by submitter

Astrid Veronig   Submitted: 2017-12-14 08:36

We study the energy release process of a set of 51 flares (32 confined, 19 eruptive) ranging from GOES class B3 to X17. We use Hα filtergrams from Kanzelhohe Observatory together with SDO HMI and SOHO MDI magnetograms to derive magnetic reconnection fluxes and rates. The flare reconnection flux is strongly correlated with the peak of the GOES 1-8 Å soft X-ray flux (c=0.92, in log-log space), both for confined and eruptive flares. Confined flares of a certain GOES class exhibit smaller ribbon areas but larger magnetic flux densities in the flare ribbons (by a factor of 2). In the largest events, up to 50% of the magnetic flux of the active region (AR) causing the flare is involved in the flare magnetic reconnection. These findings allow us to extrapolate toward the largest solar flares possible. A complex solar AR hosting a magnetic flux of 2 · 1023  Mx, which is in line with the largest AR fluxes directly measured, is capable of producing an X80 flare, which corresponds to a bolometric energy of about 7 · 1032 ergs. Using a magnetic flux estimate of 6 · 1023  Mx for the largest solar AR observed, we find that flares of GOES class ≈X500 could be produced (Ebol ≈ 3 · 1033 ergs). These estimates suggest that the present day's Sun is capable of producing flares and related space weather events that may be more than an order of magnitude stronger than have been observed to date.

Authors: J. Tschernitz, A.M. Veronig, J. Thalmann, J. Hinterreiter, W. Pötzi
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2017-12-14 13:38
Go to main E-Print page  On the factors determining the eruptive character of solar flares  Studying the transfer of magnetic helicity in solar active regions with the connectivity-based helicity flux density method  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The density compression ratio of shock fronts associated with coronal mass ejections
Evolution of Photospheric Flow and Magnetic Fields Associated with The 2015 June 22 M6.5 Flare
Spatially inhomogeneous acceleration of electrons in solar flares
Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014
The origin, early evolution and predictability of solar eruptions
Polar Field Correction for HMI Line-of-Sight Synoptic Data
Relationship between Intensity of White-Light Flares and Proton Flux of Solar Energetic Particles
Spectroscopic Observations of a Current Sheet in a Solar Flare
IRIS Observations of Spicules and Structures Near the Solar Limb
Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673
Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare
Spectroscopic diagnostics of the non-Maxwellian κ-distributions using SDO/EVE observations of the 2012 March 7 X-class flare
Transient rotation of photospheric vector magnetic fields associated with a solar flare
Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures
Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model
Solar energetic particles and radio burst emission
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope
Two-step solar filament eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University