E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
On the factors determining the eruptive character of solar flares View all abstracts by submitter

Julia K. Thalmann   Submitted: 2017-12-19 01:24

We investigated how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs. We analyzed 44 flares of GOES class M5.0 and larger that occurred during 2011-2015. We used 3D potential magnetic field models to study their location (using the flare distance from the flux-weighted AR center dFC) and the strength of the magnetic field in the corona above (via decay index n and flux ratio). We also present a first systematic study of the orientation of the coronal magnetic field, using the orientation φ of the flare-relevant polarity inversion line as a measure. We analyzed all quantities with respect to the size of the underlying dipole field, characterized by the distance between the opposite-polarity centers, dPC. Flares originating from underneath the AR dipole (dFC/dPC<0.5) tend to be eruptive if launched from compact ARs (dPC≤60 Mm) and confined if launched from extended ARs. Flares ejected from the periphery of ARs (dFC/dPC>0.5) are predominantly eruptive. In confined events the flare-relevant field adjusts its orientation quickly to that of the underlying dipole with height (Δφ≳40∘ until the apex of the dipole field), in contrast to eruptive events where it changes more slowly with height. The critical height for torus instability, hcrit=h(n=1.5), discriminates best between confined (hcrit≳40 Mm) and eruptive flares (hcrit≲40 Mm). It discriminates better than Δφ, implying that the decay of the confining field plays a stronger role than its orientation at different heights.

Authors: Christian Baumgartner, Julia K. Thalmann, Astrid M. Veronig
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2017-12-20 10:33
Go to main E-Print page  A Hydrodynamic Model of Alfv?nic Wave Heating in a Coronal Loop and its Chromospheric Footpoints  Reconnection fluxes in eruptive and confined flares and implications for superflares on the Sun  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University