E-Print Archive

There are 3914 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
On the factors determining the eruptive character of solar flares View all abstracts by submitter

Julia K. Thalmann   Submitted: 2017-12-19 01:24

We investigated how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs. We analyzed 44 flares of GOES class M5.0 and larger that occurred during 2011-2015. We used 3D potential magnetic field models to study their location (using the flare distance from the flux-weighted AR center dFC) and the strength of the magnetic field in the corona above (via decay index n and flux ratio). We also present a first systematic study of the orientation of the coronal magnetic field, using the orientation φ of the flare-relevant polarity inversion line as a measure. We analyzed all quantities with respect to the size of the underlying dipole field, characterized by the distance between the opposite-polarity centers, dPC. Flares originating from underneath the AR dipole (dFC/dPC<0.5) tend to be eruptive if launched from compact ARs (dPC≤60 Mm) and confined if launched from extended ARs. Flares ejected from the periphery of ARs (dFC/dPC>0.5) are predominantly eruptive. In confined events the flare-relevant field adjusts its orientation quickly to that of the underlying dipole with height (Δφ≳40∘ until the apex of the dipole field), in contrast to eruptive events where it changes more slowly with height. The critical height for torus instability, hcrit=h(n=1.5), discriminates best between confined (hcrit≳40 Mm) and eruptive flares (hcrit≲40 Mm). It discriminates better than Δφ, implying that the decay of the confining field plays a stronger role than its orientation at different heights.

Authors: Christian Baumgartner, Julia K. Thalmann, Astrid M. Veronig
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2017-12-20 10:33
Go to main E-Print page  A Hydrodynamic Model of Alfv?nic Wave Heating in a Coronal Loop and its Chromospheric Footpoints  Reconnection fluxes in eruptive and confined flares and implications for superflares on the Sun  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University