E-Print Archive

There are 4092 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetohydrodynamics wave propagation in the neighbourhood of two dipoles View all abstracts by submitter

James McLaughlin   Submitted: 2007-08-30 04:05

Context. This paper is the third in a series of investigations by the authors.
Aims. The nature of fast magnetoacoustic and Alfvén waves is investigated in a 2D β=0 plasma in the neighbourhood of two dipoles.
Methods. We use both numerical simulations (two-step Lax-Wendroff scheme) and analytical techniques (WKB approximation). Results. It is found that the propagation of the linear fast wave is dictated by the Alfvén speed profile and that close to the null, the wave is attracted to the neutral point. However, it is also found that in this magnetic configuration some of the wave can escape the refraction effect; this had not been seen in previous investigations by the authors. The wave split occurs near the regions of very high Alfvén speed (found near the loci of the two dipoles). Also, for the set-up investigated it was found that 40% of the wave energy accumulates at the null. Ohmic dissipation will then extract the wave energy at this point. The Alfvén wave behaves in a different manner in that part of the wave accumulates along the separatrices and part escapes. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. Conclusions. The phenomenon of wave accumulation at a specific place is a feature of both wave types, as is the result that a fraction of the wave can now escape the numerical box when propagating in this magnetic configuration.

Authors: McLaughlin, J. A. and Hood, A. W.
Projects: None

Publication Status: Astronomy and Astrophysics, 452, 603-613 (2006)
Last Modified: 2007-08-30 04:05
Go to main E-Print page  MHD mode coupling in the neighbourhood of a 2D null point  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global energetics of solar flares: VIII. The Low-Energy Cutoff

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University