E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Active Region Photospheric Magnetic Properties Derived from Line-of-sight and Radial Fields View all abstracts by submitter

Jordan A. Guerra   Submitted: 2017-12-20 02:57

The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (B los) and spherical-radial (Br) magnetograms from the Space-weather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed corresponds to ≈ 4,000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the Br component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the B los component; ii) using the Br component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information about the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv) flaring rates generally increase for higher values of properties, except Fourier spectral power index that has flare rates peaking around a value of 5/3. These findings indicate that there may be advantages in using Br rather than B los in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.

Authors: Jordan A. Guerra, Sung-H. Park, Peter T. Gallagher, Ioannis Kontogiannis, Manolis Georgoulis, D. Shaun Bloomfield
Projects: SDO-HMI

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2017-12-20 10:31
Go to main E-Print page  Observations of an Eruptive Solar Flare in the Extended EUV Solar Corona  Extending Counter-Streaming Motion from an Active Region Filament to Sunspot Light Bridge  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University