E-Print Archive

There are 3873 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Optimization of photospheric electric field estimates for accurate retrieval of total magnetic energy injection View all abstracts by submitter

Erkka Lumme   Submitted: 2017-12-22 04:49

Estimates of the photospheric magnetic, electric and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and by using of the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms - which we obtain from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to the recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly reaching at best a modest underestimation. We discuss also the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, both of which have not received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.

Authors: E. Lumme, J. Pomoell, E. K. J. Kilpua
Projects: None

Publication Status: Published in Solar Physics 292, 191, 2017
Last Modified: 2017-12-24 20:48
Go to main E-Print page  Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes  Observations of an Eruptive Solar Flare in the Extended EUV Solar Corona  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Time resolved spectroscopic observations of an M-dwarf flare star EV Lac during a flare
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares
Temperature of source regions of 3He-rich impulsive solar energetic particles events
3He-rich Solar Energetic Particles in Helical Jets on the Sun
On the importance of the nonequilibrium ionization of Si IV and O IV and the line-of-sight in solar surges
Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?
Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects
Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope
Fermi-LAT observations of the 2017 September 10th solar flare
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University