E-Print Archive

There are 3989 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Optimization of photospheric electric field estimates for accurate retrieval of total magnetic energy injection View all abstracts by submitter

Erkka Lumme   Submitted: 2017-12-22 04:49

Estimates of the photospheric magnetic, electric and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and by using of the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms - which we obtain from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to the recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly reaching at best a modest underestimation. We discuss also the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, both of which have not received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.

Authors: E. Lumme, J. Pomoell, E. K. J. Kilpua
Projects: None

Publication Status: Published in Solar Physics 292, 191, 2017
Last Modified: 2017-12-24 20:48
Go to main E-Print page  Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes  Observations of an Eruptive Solar Flare in the Extended EUV Solar Corona  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?
The development of lower-atmosphere turbulence early in a solar flare
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks
No unique solution to the seismological problem of standing kink MHD waves
Untwisting and Disintegration of a Solar Filament Associated with Photospheric Flux Cancellation
Modeling of the sunspot-associated microwave emission using a new method of DEM inversion
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University