E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope View all abstracts by submitter

Yuandeng Shen   Submitted: 2017-12-27 18:19

Using high temporal and high spatial resolution observations taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, we present the detailed observational analysis of a high quality quasi-periodic fast- propagating (QFP) magnetosonic wave that was associated with the eruption of a magnetic flux rope and a GOES C5.0 flare. For the first time, we find that the QFP wave lasted during the entire flare lifetime rather than only the rising phase of the accompanying flare as reported in previous studies. In addition, the propagation of the different parts of the wave train showed different kinematics and morphologies. For the southern (northern) part, the speed, duration, intensity variation are about 875 ± 29 (1485 ± 233) km s-1, 45 (60) minutes, and 4% (2%), and the pronounced periods of them are 106 ± 12 and 160 ± 18 (75 ± 10 and 120 ± 16) seconds, respectively. It is interesting that the northern part of the wave train showed obvious refraction effect when they pass through a region of strong magnetic field. Periodicity analysis result indicates that all the periods of the QFP wave can be found in the period spectrum of the accompanying flare, suggesting their common physical origin. We propose that the quasi-periodic nonlinear magnetohydrodynamics process in the magnetic reconnection that produces the accompanying flare should be important for exciting of QFP wave, and the different magnetic distribution along different paths can account for the different speeds and morphology evolution of the wave fronts.

Authors: Yuandeng Shen; Yu Liu; Tengfei Song; Zhanjun Tian
Projects: SDO-AIA

Publication Status: accept for publication in ApJ
Last Modified: 2018-01-03 11:40
Go to main E-Print page  Solar energetic particles and radio burst emission  Two-step solar filament eruptions  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University