E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures View all abstracts by submitter

Edward Thiemann   Submitted: 2018-01-08 09:45

Extreme ultraviolet (EUV) solar flare emissions evolve in time as the emitting plasma heats and then cools. Although accurately modeling this evolution has been historically difficult, especially for empirical relationships, it is important for understanding processes at the Sun, as well as for their influence on planetary atmospheres. With a goal to improve empirical flare models, a new simple empirical expression is derived to predict how cool emissions will evolve based on the evolution of a hotter emission. This technique is initially developed by studying 12 flares in detail observed by the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO). Then, over 1100 flares observed by EVE are analyzed to validate these relationships. The Cargill and Enthalpy Based Thermal Evolution of Loops (EBTEL) flare cooling models are used to show that this empirical relationship implies the energy radiated by a population of hotter formed ions is approximately proportional to the energy exciting a population of cooler formed ions emitting when the peak formation temperatures of the two lines are up to 72% of each other and above 2 MK. These results have practical implications for improving flare irradiance empirical modeling and for identifying key emission lines for future monitoring of flares for space weather operations; and also provide insight into the cooling processes of flare plasma.

Authors: Edward M.B. Thiemann, Francis G. Eparvier, Thomas N. Woods
Projects: SDO-EVE

Publication Status: Published in Journal of Space Weather and Space Climate
Last Modified: 2018-01-09 11:30
Go to main E-Print page  Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares  Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University