E-Print Archive

There are 3923 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares View all abstracts by submitter

Edward Thiemann   Submitted: 2018-01-08 09:48

It is generally accepted that densities of quiet sun and active region plasma are sufficiently low to justify the optically thin approximation, and it is commonly used in the analysis of line emissions from plasma in the solar corona. However, densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Further, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk-center. The model predictions are validated with an analysis of over 200 flares observed by EVE on SDO that uses 6 lines, with peak formation temperatures between 8.9 and 15.8 MK, to show limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line-of-sight typically increases by 1.76 x 1019cm-2 for limb flares over the disk-center flare value. It is shown that CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and changes the relative intensities of lines and bands commonly used for spectral analysis.

Authors: Edward Thiemann, Phillip Chamberlin, Francis Eparvier, Luke Epp
Projects: SDO-EVE

Publication Status: Accepted by Solar Physics
Last Modified: 2018-01-09 11:30
Go to main E-Print page  Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare  A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-stationary quasi-periodic pulsations in solar and stellar flares
Lost and found sunquake in the 6 September 2011 flare caused by beam electrons
Nonkinematic solar dynamo models with double-cell meridional circulation
Solar Kinetic Energy and Cross Helicity Spectra
Collective Study of Polar Crown Filaments in the Past Four Solar Cycles
Highly Ionized Calcium and Argon X-ray Spectra from a Large Solar Flare
Detecting the solar new magnetic flux regions on the base of vector magnetograms
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption
ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University