E-Print Archive

There are 3835 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The density compression ratio of shock fronts associated with coronal mass ejections View all abstracts by submitter

Ryun Young Kwon   Submitted: 2018-01-16 11:51

We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with Coronal Mass Ejections (CMEs) observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼ 2000 km s-1) observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional (3D) geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely-propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and last longer (several tens of minutes) than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

Authors: Ryun-Young Kwon, Angelos Vourlidas
Projects: None

Publication Status: Accepted for publication in the Journal of Space Weather and Space Climate
Last Modified: 2018-01-17 12:45
Go to main E-Print page  Sun-to-Earth MHD Simulation of the 14 July 2000    Evolution of Photospheric Flow and Magnetic Fields Associated with The   2015 June 22 M6.5 Flare  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares
Unambiguous Evidence of Filament Splitting-Induced Partial Eruptions
On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnotics
Plasma evolution within an erupting coronal cavity
Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event
Flux Rope Breaking and Formation of a Rotating Blowout Jet
On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory
Two-Phase Heating in Flaring Loops
Evidence For The Magnetic Breakout Model in an Equatorial Coronal-Hole Jet
Spontaneous flux concentrations from the negative effective magnetic pressure instability beneath a radiative stellar surface
Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth
Evaluation of Applicability of a Flare Trigger Model based on Comparison of Geometric Structures
Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model
Formation and Dynamics of a Solar Eruptive Flux Tube
The Instruments and Capabilities of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats
Fine Structures of Solar Radio Type III Bursts and their Possible Relationship with Coronal Density Turbulence
Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS
Observations of Electron-driven Evaporation during a Flare Precursor

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University