E-Print Archive

There are 3923 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind View all abstracts by submitter

Donald V Reames   Submitted: 2018-01-19 11:43

We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the photosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S show a crossover from low to high FIP at ~10 eV in the SEPs but ~14 eV for the solar wind, suggesting that cooler photospheric plasma, perhaps from cool sunspots beneath active regions, supply the coronal source material that eventually will be shock-accelerated as SEPs, while the source of the SSW may lie at the base of diverging open-field lines surrounding but outside active regions. Meanwhile, energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions (CIRs), generally beyond 1 AU, confirm the FIP pattern of the solar wind.

Authors: Donald V. Reames
Projects: None

Publication Status: submitted to Solar Phys.
Last Modified: 2018-01-23 11:53
Go to main E-Print page  Observations of Electron-driven Evaporation during a Flare Precursor  Sun-to-Earth MHD Simulation of the 14 July 2000   Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-stationary quasi-periodic pulsations in solar and stellar flares
Lost and found sunquake in the 6 September 2011 flare caused by beam electrons
Nonkinematic solar dynamo models with double-cell meridional circulation
Solar Kinetic Energy and Cross Helicity Spectra
Collective Study of Polar Crown Filaments in the Past Four Solar Cycles
Highly Ionized Calcium and Argon X-ray Spectra from a Large Solar Flare
Detecting the solar new magnetic flux regions on the base of vector magnetograms
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption
ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University