E-Print Archive

There are 3923 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Observations of Electron-driven Evaporation during a Flare Precursor View all abstracts by submitter

Dong Li   Submitted: 2018-01-22 18:34

We investigate the relationship between the blue shifts of a hot emission line and the nonthermal emissions in microwave and hard X-ray (HXR) wavelengths during the precursor of a solar flare on 2014 October 27. The flare precursor is identified as a small but well-developed peak in soft X-ray and extreme-ultraviolet passbands before the GOES flare onset, which is accompanied by a pronounced burst in microwave 17 & 34 GHz and HXR 25-50 keV. The slit of Interface Region Imaging Spectrograph (IRIS) stays at one ribbon-like transient during the flare precursor, where shows visible nonthermal emissions in NoRH and RHESSI images. The IRIS spectroscopic observations show that the hot line of Fe XXI 1354.09 Å (logT ~ 7.05) displays blue shifts, while the cool line of Si IV 1402.77 Å (logT ~ 4.8) exhibits red shifts. The blue shifts and red shifts are well correlated to each other, indicative of an explosive chromospheric evaporation during the flare precursor particularly combining with a high nonthermal energy flux and a short characteristic timescale. In addition, the blue shifts of Fe XXI 1354.09 Å are well correlated with the microwave and HXR emissions, implying that the explosive chromospheric evaporation during the flare precursor is driven by nonthermal electrons.

Authors: Dong Li, Ying Li, Wei Su, Yu Huang, Zongjun Ning
Projects: IRIS

Publication Status: accept by the Astrophysical Journal
Last Modified: 2018-01-23 11:52
Go to main E-Print page  Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS  The ?FIP Effect? and the Origins of Solar Energetic Particles and of the Solar Wind  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-stationary quasi-periodic pulsations in solar and stellar flares
Lost and found sunquake in the 6 September 2011 flare caused by beam electrons
Nonkinematic solar dynamo models with double-cell meridional circulation
Solar Kinetic Energy and Cross Helicity Spectra
Collective Study of Polar Crown Filaments in the Past Four Solar Cycles
Highly Ionized Calcium and Argon X-ray Spectra from a Large Solar Flare
Detecting the solar new magnetic flux regions on the base of vector magnetograms
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University