E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observations of Electron-driven Evaporation during a Flare Precursor View all abstracts by submitter

Dong Li   Submitted: 2018-01-22 18:34

We investigate the relationship between the blue shifts of a hot emission line and the nonthermal emissions in microwave and hard X-ray (HXR) wavelengths during the precursor of a solar flare on 2014 October 27. The flare precursor is identified as a small but well-developed peak in soft X-ray and extreme-ultraviolet passbands before the GOES flare onset, which is accompanied by a pronounced burst in microwave 17 & 34 GHz and HXR 25-50 keV. The slit of Interface Region Imaging Spectrograph (IRIS) stays at one ribbon-like transient during the flare precursor, where shows visible nonthermal emissions in NoRH and RHESSI images. The IRIS spectroscopic observations show that the hot line of Fe XXI 1354.09 Å (logT ~ 7.05) displays blue shifts, while the cool line of Si IV 1402.77 Å (logT ~ 4.8) exhibits red shifts. The blue shifts and red shifts are well correlated to each other, indicative of an explosive chromospheric evaporation during the flare precursor particularly combining with a high nonthermal energy flux and a short characteristic timescale. In addition, the blue shifts of Fe XXI 1354.09 Å are well correlated with the microwave and HXR emissions, implying that the explosive chromospheric evaporation during the flare precursor is driven by nonthermal electrons.

Authors: Dong Li, Ying Li, Wei Su, Yu Huang, Zongjun Ning
Projects: IRIS

Publication Status: accept by the Astrophysical Journal
Last Modified: 2018-01-23 11:52
Go to main E-Print page  Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS  The ?FIP Effect? and the Origins of Solar Energetic Particles and of the Solar Wind  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University