E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Evaluation of Applicability of a Flare Trigger Model based on Comparison of Geometric Structures View all abstracts by submitter

Yumi Bamba   Submitted: 2018-02-01 18:54

The triggering mechanism(s) and critical condition(s) of solar flares are still not completely clarified, although various studies have attempted to elucidate them. We have also proposed a theoretical flare-trigger model based on MHD simulations Kusano et al. 2012, in which two types of small-scale bipole field, the so-called Opposite Polarity (OP) and Reversed Shear (RS) types of field, can trigger flares. In this study, we evaluated the applicability of our flare-trigger model to observation of 32 flares that were observed by the Solar Dynamics Observatory (SDO), by focusing on geometrical structures. We classified the events into six types, including the OP and RS types, based on photospheric magnetic field configuration, presence of precursor brightenings, and shape of the initial flare ribbons. As a result, we found that approximately 30% of the flares were consistent with our flare-trigger model, and the number of RS type triggered flares is larger than that of the OP type. We found none of the sampled events contradicts our flare model, although we cannot clearly determine the trigger mechanism of 70% of the flares in this study. We carefully investigated the applicability of our flare-trigger model and the possibility that other models can explain the other 70% of the events. Consequently, we concluded that our flare-trigger model has certainly proposed important conditions for flare-triggering.

Authors: Yumi Bamba and Kanya Kusano
Projects: SDO-AIA,SDO-HMI

Publication Status: Accepted by the Astrophysical Journal
Last Modified: 2018-02-05 22:08
Go to main E-Print page  Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth  Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University