E-Print Archive

There are 3923 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Spontaneous flux concentrations from the negative effective magnetic pressure instability beneath a radiative stellar surface View all abstracts by submitter

Axel Brandenburg   Submitted: 2018-02-03 05:30

Abstract: The formation of sunspots requires the concentration of magnetic flux near the surface. The negative magnetic pressure instability (NEMPI) might be a possible mechanism for accomplishing this, but it has mainly been studied in simple systems using an isothermal equation of state without a natural free surface. We study NEMPI in a stratified Cartesian mean-field model where turbulence effects are parameterized. We use an ideal equation of state and include radiation transport, which establishes selfconsistently a free surface. We use a Kramers-type opacity with adjustable exponents chosen such that the deeper layers are approximately isentropic. No convection is therefore possible in this model, allowing us to study NEMPI with radiation in isolation. We restrict ourselves to two-dimensional models. We use artificially enhanced mean-field coefficients to allow NEMPI to develop, making it therefore possible to study the reason why it is much harder to excite in the presence of radiation. NEMPI yields moderately strong magnetic flux concentrations a certain distance beneath the surface where optical depth is unity. The instability is oscillatory and in the form of upward travelling waves. This seems to be a new effect that has not been found in earlier models without radiative transport. The horizontal wavelength is about ten times smaller than what has been found previously in more idealized isothermal models. In our models, NEMPI saturates at field strengths too low to explain sunspots. Furthermore, the structures appear too narrow and too far beneath the surface to cause significant brightness variations at the radiative surface. We speculate that the failure to reproduce effects resembling sunspots may be related to the neglect of convection.

Authors: Perri, B., & Brandenburg, A.
Projects: None

Publication Status: A&A 609, A99 (2018)
Last Modified: 2018-02-05 22:07
Go to main E-Print page  Evidence For The Magnetic Breakout Model in an Equatorial Coronal-Hole Jet  Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-stationary quasi-periodic pulsations in solar and stellar flares
Lost and found sunquake in the 6 September 2011 flare caused by beam electrons
Nonkinematic solar dynamo models with double-cell meridional circulation
Solar Kinetic Energy and Cross Helicity Spectra
Collective Study of Polar Crown Filaments in the Past Four Solar Cycles
Highly Ionized Calcium and Argon X-ray Spectra from a Large Solar Flare
Detecting the solar new magnetic flux regions on the base of vector magnetograms
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption
ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University