E-Print Archive

There are 3882 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Flux Rope Breaking and Formation of a Rotating Blowout Jet View all abstracts by submitter

Navin Chandra Joshi   Submitted: 2018-02-07 06:40

We analyzed a small flux rope eruption converted into a helical blowout jet in a fan-spine configuration using multi-wavelength observations taken by SDO, which occurred near the limb on 2016 January 9. In our study, first, we estimated the fan-spine magnetic configuration with the potential field calculation and found a sinistral small filament inside it. The filament along with the flux rope erupted upward and interacted with the surrounding fan- spine magnetic configuration, where the flux rope breaks in the middle section. We observed compact brightening, flare ribbons and post-flare loops underneath the erupting filament. The northern section of the flux rope reconnected with the surrounding positive polarity, while the southern section straightened. Next, we observed the untwisting motion of the southern leg, which was transformed into a rotating helical blowout jet. The sign of the helicity of the mini-filament matches the one of the rotating jet. This is consistent with the jet models presented by Adams et al. (2014) and Sterling et al. (2015). We focused on the fine thread structure of the rotating jet and traced three blobs with the speed of 60-120 km s-1, while the radial speed of the jet is approx 400 km s-1. The untwisting motion of the jet accelerated plasma upward along the collimated outer spine field lines, and it finally evolved into a narrow coronal mass ejection at the height of approx 9 Rsun . On the basis of the detailed analysis, we discussed clear evidence of the scenario of the breaking of the flux rope and the formation of the helical blowout jet in the fan-spine magnetic configuration.

Authors: Navin Chandra Joshi, Naoto Nishizuka, Boris Filippov, Tetsuya Magara, Andrey G. Tlatov
Projects: GOES X-rays,RHESSI,SDO-AIA,SDO-HMI,SoHO-LASCO

Publication Status: Accepted for publication in MNRAS Journal
Last Modified: 2018-02-08 16:19
Go to main E-Print page  Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event  On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops
Study of Three-dimensional Magnetic Structure and the Successive Eruptive Nature of Active Region 12371
Statistical study of magnetic non-potential measures in confined and eruptive flares
Quasi-periodic Counter-propagating Fast Magnetosonic Wave Trains from Neighboring Flares: SDO/AIA Observations and 3D MHD Modeling
Negative flare in the He I 10830 Å line in facula
Time resolved spectroscopic observations of an M-dwarf flare star EV Lac during a flare
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University