E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnotics View all abstracts by submitter

Sophie Musset   Submitted: 2018-02-08 10:12

Imaging spectroscopy in X-rays with RHESSI provide the possibility to investigate the spatial evolution of the X-ray emitting electron distribution and therefore to study the transport effects on energetic electrons during solar flares. We study the energy dependence of the energetic electron scattering mean free path in the solar corona. We use the imaging spectroscopy technique with RHESSI to study the evolution of energetic electrons distribution in different part of the magnetic loop during the 2004 May 21 flare. These observations are compared with the radio observations of the gyrosynchrotron radiation of the same flare by Kuznetsov and Kontar (2015), and with the predictions of the diffusive transport model described by Kontar et al. (2014). The X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for the radio-emitting electrons than for the X-ray-emitting electrons. These observations can be explained by the diffusive transport model derived by Kontar et al. (2014). We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations; and in the range 25-500 keV, the electron scattering mean free path decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.

Authors: S. Musset, E. P. Kontar and N. Vilmer
Projects: RHESSI

Publication Status: Published online
Last Modified: 2018-02-08 16:19
Go to main E-Print page  Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares  Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University