E-Print Archive

There are 3950 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnotics View all abstracts by submitter

Sophie Musset   Submitted: 2018-02-08 10:12

Imaging spectroscopy in X-rays with RHESSI provide the possibility to investigate the spatial evolution of the X-ray emitting electron distribution and therefore to study the transport effects on energetic electrons during solar flares. We study the energy dependence of the energetic electron scattering mean free path in the solar corona. We use the imaging spectroscopy technique with RHESSI to study the evolution of energetic electrons distribution in different part of the magnetic loop during the 2004 May 21 flare. These observations are compared with the radio observations of the gyrosynchrotron radiation of the same flare by Kuznetsov and Kontar (2015), and with the predictions of the diffusive transport model described by Kontar et al. (2014). The X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for the radio-emitting electrons than for the X-ray-emitting electrons. These observations can be explained by the diffusive transport model derived by Kontar et al. (2014). We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations; and in the range 25-500 keV, the electron scattering mean free path decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.

Authors: S. Musset, E. P. Kontar and N. Vilmer
Projects: RHESSI

Publication Status: Published online
Last Modified: 2018-02-08 16:19
Go to main E-Print page  Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares  Plasma evolution within an erupting coronal cavity  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University