E-Print Archive

There are 3989 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event View all abstracts by submitter

Michele Piana   Submitted: 2018-02-08 02:48

Hard X-ray emission in solar flares is typically characterized by a number of discrete sources, each with its own spectral, temporal, and spatial variability. Establishing the relationship amongst these sources is critical to determine the role of each in the energy release and transport processes that occur within the flare. In this paper we present a novel method to identify and characterize each source of hard X-ray emission. In particular, the method permits a quantitative determination of the most likely number of subsources present, and of the relative probabilities that the hard X-ray emission in a given subregion of the flare is represented by a complicated multiple source structure or by a simpler single source. We apply the method to a well-studied flare on 2002 February 20 in order to assess competing claims as to the number of chromospheric footpoint sources present, and hence to the complexity of the underlying magnetic geometry/toplogy. Contrary to previous claims of the need for multiple sources to account for the chromospheric hard X-ray emission at different locations and times, we find that a simple two-footpoint-plus-coronal-source model is the most probable explanation for the data. We also find that one of the footpoint sources moves quite rapidly throughout the event, a factor that presumably complicated previous analyses. The inferred velocity of the footpoint corresponds to a very high induced electric field, compatible with those in thin reconnecting current sheets.

Authors: Federica Sciacchitano, Alberto Sorrentino, A Gordon Emslie, Anna Maria Massone, Michele Piana
Projects: RHESSI

Publication Status: submitted to ApJ
Last Modified: 2018-02-08 16:22
Go to main E-Print page  Plasma evolution within an erupting coronal cavity  Flux Rope Breaking and Formation of a Rotating Blowout Jet  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?
The development of lower-atmosphere turbulence early in a solar flare
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks
No unique solution to the seismological problem of standing kink MHD waves
Untwisting and Disintegration of a Solar Filament Associated with Photospheric Flux Cancellation
Modeling of the sunspot-associated microwave emission using a new method of DEM inversion
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University