E-Print Archive

There are 3945 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observationally quantified reconnection providing a viable mechanism for active region coronal heating View all abstracts by submitter

Kai Yang   Submitted: 2018-02-17 01:24

The heating of the Sun's corona has been explained by several different mechanisms including wave dissipation and magnetic reconnection. While both have been shown capable of supplying the requisite power, neither has been used in a quantitative model of observations fed by measured inputs. Here we show that impulsive reconnection is capable of producing an active region corona agreeing both qualitatively and quantitatively with extreme-ultraviolet observations. We calculate the heating power proportional to the velocity difference between magnetic footpoints and the photospheric plasma, called the non-ideal velocity. The length scale of flux elements reconnected in the corona is found to be around 160 km. The differential emission measure of the model corona agrees with that derived using multi-wavelength images. Synthesized extreme-ultraviolet images resemble observations both in their loop-dominated appearance and their intensity histograms. This work provides compelling evidence that impulsive reconnection events are a viable mechanism for heating the corona.

Authors: Kai E. Yang, Dana W. Longcope, M.D. Ding, and Yang Guo
Projects: None

Publication Status: Published, Nature Communications volume 9, Article number: 692
Last Modified: 2018-02-21 12:17
Go to main E-Print page  Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating  Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging
The Minimum Energy Principle Applied to Parker's Coronal Braiding and Nanoflaring Scenario
Eruptions from quiet Sun coronal bright points. I. Observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University