E-Print Archive

There are 3897 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona View all abstracts by submitter

Jeffrey Reep   Submitted: 2018-02-27 09:15

Solar flares form and release energy across a large number of magnetic loops. The global parameters of flares, such as the total energy released, duration, physical size, etc., are routinely measured, and the hydrodynamics of a coronal loop subjected to intense heating have been extensively studied. It is not clear, however, how many loops comprise a flare, nor how the total energy is partitioned between them. In this work, we employ a hydrodynamic model to better understand the energy partition by synthesizing Si IV and Fe XXI line emission and comparing to observations of these lines with IRIS. We find that the observed temporal evolution of the Doppler shifts holds important information on the heating duration. To demonstrate this we first examine a single loop model, and find that the properties of chromospheric evaporation seen in Fe XXI can be reproduced by loops heated for long durations, while persistent red-shifts seen in Si IV cannot be reproduced by any single loop model. We then examine a multi-threaded model, assuming both a fixed heating duration on all loops, and a distribution of heating durations. For a fixed heating duration, we find that durations of 100 - 200 s do a fair job of reproducing both the red- and blue-shifts, while a distribution of durations, with a median of about 50 - 100 s, does a better job. Finally, we compare our simulations directly to observations of an M-class flare seen by IRIS, and find good agreement between the modeled and observed values given these constraints.

Authors: Jeffrey W. Reep, Vanessa Polito, Harry P. Warren, Nicholas A. Crump
Projects: None

Publication Status: Accepted to ApJ
Last Modified: 2018-02-28 14:00
Go to main E-Print page  An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona  On the detection of coronal dimmings and the extraction of their characteristic properties  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Computation of Relative Magnetic Helicity in Spherical Coordinates
Some characteristics of the GLE on 10 September 2017
Quasi-periodic Pulsations in a Solar Microflare
Homologous large-amplitude Nonlinear fast-mode Magnetosonic Waves Driven by Recurrent Coronal Jets
EUV Waves Driven by Sudden Expansion of Transequatorial Loops Caused by Solar Coronal Jets
Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts
Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions?
Cyclic Changes of the Sun's Seismic Radius
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017
Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer
Solar coronal loop dynamics near the null point above active region NOAA 2666
Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University