E-Print Archive

There are 3945 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673 View all abstracts by submitter

Xiaoli Yan   Submitted: 2018-02-28 18:19

We present a clear case study on the occurrence of two successive X-class flares including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities started on September 5 and even lasted after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of active region also began to rotate counter-clockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counter-clockwise rotation of three sunspots. The existence of a flux rope is found prior to the onset of two flares by using non-linear force free field extrapolation based on the vector magnetograms observed by SDO/HMI. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona which produces solar flares and CMEs.

Authors: Yan,X.L., Wang,J.X., Pan, G.M., Kong, D.F., Xue, Z.K., Yang, L.H., Li, Q.L., Feng, X.S.
Projects: New Vacuum Solar Telescope (NVST),SDO-AIA,SDO-HMI

Publication Status: Accepted for publication in ApJ
Last Modified: 2018-03-01 16:29
Go to main E-Print page  Statistics of   An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging
The Minimum Energy Principle Applied to Parker's Coronal Braiding and Nanoflaring Scenario
Eruptions from quiet Sun coronal bright points. I. Observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University