E-Print Archive

There are 4099 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
GONG Catalog of Solar Filament Oscillations Near Solar Maximum View all abstracts by submitter

Manuel Luna   Submitted: 2018-04-12 03:35

We have catalogued 196 filament oscillations from the GONG Hα network data during several months near the maximum of solar cycle 24 (January - June 2014). Selected examples from the catalog are described in detail, along with our statistical analyses of all events. Oscillations were classified according to their velocity amplitude: 106 small-amplitude oscillations (SAOs), with velocities <10km s-1, and 90 large-amplitude oscillations (LAOs), with velocities >10km s-1. Both SAOs and LAOs are common, with one event of each class every two days on the visible side of the Sun. For nearly half of the events we identified their apparent trigger. The period distribution has a mean value of 58?15 min for both types of oscillations. The distribution of the damping time per period peaks at τ/P=1.75 and 1.25 for SAOs and LAOs respectively. We confirmed that LAO damping rates depend nonlinearly on the oscillation velocity. The angle between the direction of motion and the filament spine has a distribution centered at 27∘ for all filament types. This angle agrees with the observed direction of filament-channel magnetic fields, indicating that most of the catalogued events are longitudinal (i.e., undergo field-aligned motions). We applied seismology to determine the average radius of curvature in the magnetic dips, R≈89 Mm, and the average minimum magnetic-field strength, B≈16 G. The catalog is available to the community online, and is intended to be expanded to cover at least 1 solar cycle.

Authors: Manuel Luna, Judith Karpen, José Luis Ballester, Karin Muglach, Jaume Terradas, Therese Kucera, Holly Gilbert
Projects: GONG

Publication Status: Accepted for publication in ApJ Supplement Series
Last Modified: 2018-04-12 08:29
Go to main E-Print page  Quasi-periodic pulsations in the most powerful solar flare of Cycle 24  Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University