E-Print Archive

There are 4021 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017 View all abstracts by submitter

Alexander Kosovichev   Submitted: 2018-05-25 11:59

The X9.3 flare of September 6, 2017, was the most powerful flare of Solar Cycle 24. It generated strong white-light emission and multiple helioseismic waves (sunquakes). By using data from Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as well as hard X-ray data from KONUS instrument onboard WIND spacecraft, and Anti-Coincidence System (ACS) onboard the INTERGRAL space observatory, we investigate spatio-temporal dynamics of photospheric emission sources, identify sources of helioseismic waves and compare the flare photospheric dynamics with the hard X-ray (HXR) temporal profiles. The results show that the photospheric flare impacts started to develop in compact regions in close vicinity of the magnetic polarity inversion line (PIL) in the pre-impulsive phase before detection of the HXR emission. The initial photospheric disturbances were localized in the region of strong horizontal magnetic field of the PIL, and, thus, are likely associated with a compact sheared magnetic structure elongated along the PIL. The acoustic egression power maps revealed two primary sources of generation of sunquakes, which were associated with places of the strongest photospheric impacts in the pre-impulsive phase and the early impulsive phase. This can explain the two types of helioseismic waves observed in this flare. Analysis of the high-cadence HMI filtergrams suggests that the flare energy release developed in the form of sequential involvement of compact low-lying magnetic loops that were sheared along the PIL.

Authors: Ivan N. Sharykin, Alexander G. Kosovichev

Publication Status: submitted to ApJ
Last Modified: 2018-05-26 17:25
Go to main E-Print page  Cyclic Changes of the Sun's Seismic Radius   Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University