E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions? View all abstracts by submitter

Marc DeRosa   Submitted: 2018-05-30 14:29

The most energetic solar flares are typically associated with the ejection of a cloud of coronal material into the heliosphere in the form of a coronal mass ejection (CME). However, there exist large flares which are not accompanied by a CME. The existence of these non-eruptive flares raises the question of whether such flares suffer from a lack of access to nearby open fields in the vicinity above the flare (reconnection) site. In this study, we use a sample of 56 flares from Sunspot Cycles 23 and 24 to test whether active regions that produce eruptive X-class flares are preferentially located near coronal magnetic field domains that are open to the heliosphere, as inferred from a potential field source surface model. The study shows that X-class flares having access to open fields are eruptive at a higher rate than those for which access is lacking. The significance of this result should be moderated due to the small number of non-eruptive X-class flares in the sample, based on the associated Bayes factor.

Authors: Marc L. DeRosa, Graham Barnes
Projects: GOES X-rays,SDO-AIA,SDO-HMI,SoHO-EIT,SoHO-MDI,SoHO-LASCO

Publication Status: ApJ (in press)
Last Modified: 2018-06-03 13:00
Go to main E-Print page  Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?  Cyclic Changes of the Sun's Seismic Radius   Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University