E-Print Archive

There are 4525 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory View all abstracts by submitter

Werner Poetzi   Submitted: 2018-06-21 02:37

In the framework of the Space Situational Awareness program of the European Space Agency (ESA/SSA), an automatic flare detection system was developed at Kanzelhöhe Observatory (KSO). The system has been in operation since mid-2013. The event detection algorithm was upgraded in September 2017. All data back to 2014 was reprocessed using the new algorithm. In order to evaluate both algorithms, we apply verification measures that are commonly used for forecast validation. In order to overcome the problem of rare events, which biases the verification measures, we introduce a new event-based method. We divide the timeline of the Hα observations into positive events (flaring period) and negative events (quiet period), independent of the length of each event. In total, 329 positive and negative events were detected between 2014 and 2016. The hit rate for the new algorithm reached 96% (just five events were missed) and a false-alarm ratio of 17%. This is a significant improvement of the algorithm, as the original system had a hit rate of 85% and a false-alarm ratio of 33%. The true skill score and the Heidke skill score both reach values of 0.8 for the new algorithm; originally, they were at 0.5. The mean flare positions are accurate within ±1 heliographic degree for both algorithms, and the peak times improve from a mean difference of 1.7±2.9 minutes to 1.3±2.3 minutes. The flare start times that had been systematically late by about 3 minutes as determined by the original algorithm, now match the visual inspection within -0.47±4.10 minutes.

Authors: Pötzi W., Veronig A., Temmer M.
Projects: Other

Publication Status: published
Last Modified: 2018-06-21 13:33
Go to main E-Print page  Non-damping oscillations at flaring loops  Computation of Relative Magnetic Helicity in Spherical Coordinates  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University