E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Non-damping oscillations at flaring loops View all abstracts by submitter

Dong Li   Submitted: 2018-06-22 08:01

We investigate the properties of non-damping oscillations at flaring loops using observations from the IRIS, SDO, Fermi and GOES. The double-component Gaussian fitting method is used to extract the line pro le of Fe XXI 1354.08 A at the spectral window. The quasi-periodicity of loop oscillations are identified in the Fourier and wavelet spectra. A quasi-period of about 40 s is detected in the line properties of Fe XXI 1354.08 A, hard X-ray emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km s-1 and 1.9 km s-1, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. The observations show that 40 s oscillations are not damped significantly, which could be linked to the global kink modes of flaring loops. The magnetic field strengths at flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics and the flux rope insertion method. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of the Fe xxi 1354.08 A line emission, and AIA 131 A intensity, and it is likely a signature of recurring downflows after chromospheric evaporation along the flaring loops.

Authors: Li, D.; Yuan, D.; Su, Y. N.; Zhang, Q. M.; Su, W.; Ning, Z. J.
Projects: Fermi/GBM,IRIS

Publication Status: accepted by A&A
Last Modified: 2018-06-22 11:42
Go to main E-Print page  2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using   Fourier filtering  An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelh?he Observatory  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University