E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Non-potential magnetic helicity ratios at the onset of eruptions View all abstracts by submitter

Etienne Pariat   Submitted: 2018-07-02 02:46

The relative magnetic helicity is a quantity that is often used to describe the level of entanglement of non-isolated magnetic fields, such as the magnetic field of solar active regions. The aim of this paper is to investigate how different kinds of photospheric boundary flows accumulate relative magnetic helicity in the corona and if and how-well magnetic helicity related quantities identify the onset of an eruption. We use a series of three-dimensional, parametric magnetohydrodynamic simulations of the formation and eruption of magnetic flux ropes. All the simulations are performed on the same grid, using the same parameters, but they are characterized by different driving photospheric flows, i.e., shearing, convergence, stretching, peripheral- and central- dispersion flows. For each of the simulations, the instant of the onset of the eruption is carefully identified by using a series of relaxation runs. We find that magnetic energy and total relative helicity are mostly injected when shearing flows are applied at the boundary, while the magnetic energy and helicity associated with the coronal electric currents increase regardless of the kind of photospheric flows. We also find that, at the onset of the eruptions, the ratio between the non-potential magnetic helicity and the total relative magnetic helicity has the same value for all the simulations, suggesting the existence of a threshold in this quantity. Such threshold is not observed for other quantities as, for example, those related to the magnetic energy.

Authors: Francesco P. Zuccarello, Etienne Pariat, Gherardo Valori, Luis Linan
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2018-07-02 10:48
Go to main E-Print page  A Study of a  Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures  Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University