E-Print Archive

There are 3950 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation View all abstracts by submitter

Johan Muhamad   Submitted: 2018-07-05 19:57

Coronal magnetic fields are responsible for the onset of solar flares and solar eruptions. However, the type of magnetic field parameters that can be used to measure the critical condition for a solar eruption is still unclear. As an effort to understand the possible condition for a solar flare, we have examined the non-dimensional parameter K introduced by Ishiguro & Kusano (2017), which contains information about magnetic twist distribution and magnetic flux in an active region (AR). We introduce a new parameter K*, as a proxy for K, and we have analyzed the evolution of K* during the flaring period of an AR using the nonlinear force-free field (NLFFF) extrapolated from the photospheric vector magnetic field data. Using data from the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), we have calculated K* for the AR NOAA 11158 during its three-day flaring period. We found that K* increased to a certain level before two large flares and decreased significantly after their onset. The results suggest that K* may be used as an indicator of the necessary condition for the onset of a solar eruption in the AR. Based on this result, we propose a new method to assess the possibility of a large solar eruption from an AR by combining the parameter K* and information about the magnetic energy of the AR.

Authors: Johan Muhamad, Kanya Kusano, Satoshi Inoue, Yumi Bamba
Projects: Hinode/SOT,SDO-AIA,SDO-HMI

Publication Status: ApJ (accepted)
Last Modified: 2018-07-06 11:04
Go to main E-Print page  Spectroscopic and imaging observations of small-scale reconnection events  A Study of a  Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University