E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST View all abstracts by submitter

Dong Li   Submitted: 2018-07-11 23:51

We present high-resolution observations of two kinds of dynamic behavior in a quiescent prominence using the New Vacuum Solar Telescope, i.e., Kelvin-Helmholtz instabilities (KHIs) and small-scale oscillations. The KHIs were identified as rapidly developed vortex-like structures with counter-clockwise/clockwise rotations in the Ha red-wing images at +0.3 A, which were produced by the strong shear-flows motions on the surface/interface of prominence plumes. The KHI growth rates are estimated to be about 0.0135 ±0.0004 and 0.0138 ± 0.0004. Our observational results further suggest that the shear velocities (i.e, supersonic) of the mass flows are fast enough to produce the strong deformation of the boundary and overcome the restraining surface tension force. This flow-driven instability might play a significant role in the process of plasma transfer in solar prominences. The small-scale oscillations perpendicular to the prominence threads are observed in the Ha line-center images. The oscillatory periods changed non-monotonically and showed two changing patterns, in which one firstly decreased slowly and then it changed to increase, while the other grew fast at the beginning and then it changed to decrease. Both of these two thread oscillations with changing periods were observed to be unstable for an entire cycle, and they were local in nature. All our findings indicate that the small-scale thread oscillations could be magnetohydrodynamic waves in the solar corona.

Authors: Dong Li, Yuandeng Shen, Zongjun Ning, Qingmin Zhang, Tuanhui Zhou
Projects: New Vacuum Solar Telescope (NVST)

Publication Status: accept by the Astrophysical Journal
Last Modified: 2018-07-17 10:51
Go to main E-Print page  Solar Microflares Observed by SphinX and RHESSI  Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University