E-Print Archive

There are 3967 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST View all abstracts by submitter

Dong Li   Submitted: 2018-07-11 23:51

We present high-resolution observations of two kinds of dynamic behavior in a quiescent prominence using the New Vacuum Solar Telescope, i.e., Kelvin-Helmholtz instabilities (KHIs) and small-scale oscillations. The KHIs were identified as rapidly developed vortex-like structures with counter-clockwise/clockwise rotations in the Ha red-wing images at +0.3 A, which were produced by the strong shear-flows motions on the surface/interface of prominence plumes. The KHI growth rates are estimated to be about 0.0135 ±0.0004 and 0.0138 ± 0.0004. Our observational results further suggest that the shear velocities (i.e, supersonic) of the mass flows are fast enough to produce the strong deformation of the boundary and overcome the restraining surface tension force. This flow-driven instability might play a significant role in the process of plasma transfer in solar prominences. The small-scale oscillations perpendicular to the prominence threads are observed in the Ha line-center images. The oscillatory periods changed non-monotonically and showed two changing patterns, in which one firstly decreased slowly and then it changed to increase, while the other grew fast at the beginning and then it changed to decrease. Both of these two thread oscillations with changing periods were observed to be unstable for an entire cycle, and they were local in nature. All our findings indicate that the small-scale thread oscillations could be magnetohydrodynamic waves in the solar corona.

Authors: Dong Li, Yuandeng Shen, Zongjun Ning, Qingmin Zhang, Tuanhui Zhou
Projects: New Vacuum Solar Telescope (NVST)

Publication Status: accept by the Astrophysical Journal
Last Modified: 2018-07-17 10:51
Go to main E-Print page  Solar Microflares Observed by SphinX and RHESSI  Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University