E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics View all abstracts by submitter

Sepideh Kianfar   Submitted: 2018-07-13 03:29

We present detailed characteristics of linear polarization features (LPFs) in the quiet-Sun photosphere from high resolution observations obtained with Sunrise/IMaX. We explore differently treated data with various noise levels in linear polarization signals, from which structure and dynamics of the LPFs are studied. Physical properties of the detected LPFs are also obtained from the results of Stokes inversions. The number of LPFs, as well as their sizes and polarization signals, are found to be strongly dependent on the noise level, and on the spatial resolution. While the linear polarization with signal-to-noise ratio ≥4.5 covers about 26% of the entire area in the least noisy data in our study (with a noise level of 1.7x10-4 in the unit of Stokes I continuum), the detected (spatially resolved) LPFs cover about 10% of the area at any given time, with an occurrence rate on the order of 8x10-3 s-1 arcsec-2. The LPFs were found to be short lived (in the range of 30-300 s), relatively small structures (radii of ≈0.1-1.5 arcsec), highly inclined, posing hG fields, and move with an average horizontal speed of 1.2 km s-1. The LPFs were observed (almost) equally on both upflow and downflow regions, with intensity contrast always larger than that of the the average quiet-Sun.

Authors: Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics S. Kianfar, S. Jafarzadeh, M. T. Mirtorabi, T. L. Riethmüller
Projects: Other

Publication Status: Accepted to Solar Physics Journal
Last Modified: 2018-07-17 10:50
Go to main E-Print page  Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence  Solar Microflares Observed by SphinX and RHESSI  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University