E-Print Archive

There are 3947 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence View all abstracts by submitter

Sung-Hong Park   Submitted: 2018-07-22 19:31

Solar active regions (ARs) that produce major flares typically exhibit strong plasma shear flows around photospheric magnetic polarity inversion lines (MPILs). It is therefore important to quantitatively measure such photospheric shear flows in ARs for a better understanding of their relation to flare occurrence. Photospheric flow fields were determined by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) method to a large data set of 2,548 co-aligned pairs of AR vector magnetograms with 12-min separation over the period 2012-2016. From each AR flow-field map, three shear-flow parameters were derived corresponding to the mean (Smean), maximum (Smax) and integral (Ssum) shear-flow speeds along strong-gradient, strong-field MPIL segments. We calculated flaring rates within 24 hr as a function of each shear-flow parameter, and also investigated the relation between the parameters and the waiting time (τ) until the next major flare (class M1.0 or above) after the parameter observation. In general, it is found that the larger Ssum an AR has, the more likely it is for the AR to produce flares within 24 hr. It is also found that among ARs which produce major flares, if one has a larger value of Ssum then τ generally gets shorter. These results suggest that large ARs with widespread and/or strong shear flows along MPILs tend to not only be more flare productive, but also produce major flares within 24 hr or less.

Authors: S.-H. Park, J. A. Guerra, P. T. Gallagher, M. K. Georgoulis, D. S. Bloomfield
Projects: None

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2018-07-23 10:01
Go to main E-Print page  ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION  Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University