E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption View all abstracts by submitter

Wei Liu   Submitted: 2018-07-25 10:19

We report SDO/AIA observations of an extraordinary global extreme ultraviolet (EUV) wave triggered by the X8.2 flare-CME eruption on 2017 September 10. This was one of the best EUV waves ever observed with modern instruments, yet likely the last one of such magnitudes of Solar Cycle 24 as the Sun heads toward the minimum. Its remarkable characteristics include: (1) The wave was observed, for the first time, to traverse the full-Sun corona over the entire visible solar disk and off-limb circumference, manifesting a truly global nature, owing to its exceptionally large amplitude, e.g., with EUV enhancements by up to 300% at 1.1 Rsun from the eruption. (2) This leads to strong transmissions (besides commonly observed reflections) in and out of both polar coronal holes, which are usually devoid of EUV waves. It has elevated wave speeds >2000 km s-1 within them, consistent with the expected higher fast-mode magnetosonic speeds. The coronal holes essentially serve as new ''radiation centers'' for the waves being refracted out of them, which then travel toward the equator and collide head-on, causing additional EUV enhancements. (3) The wave produces significant compressional heating to local plasma upon its impact, indicated by long-lasting EUV intensity changes and differential emission measure increases at higher temperatures (e.g., log T=6.2) accompanied by decreases at lower temperatures (log T=6.0). These characteristics signify the potential of such EUV waves for novel magnetic and thermal diagnostics of the solar corona {it on global scales}.

Authors: Wei Liu, Meng Jin, Cooper Downs, Leon Ofman, Mark Cheung, and Nariaki V. Nitta
Projects: SDO-AIA

Publication Status: Accepted by ApJ Letters (as of July 24, 2018)
Last Modified: 2018-07-29 21:13
Go to main E-Print page  A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption  ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University