E-Print Archive

There are 4290 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Nonkinematic solar dynamo models with double-cell meridional circulation View all abstracts by submitter

Valery Pipin   Submitted: 2018-08-06 19:51

Employing the standard solar interior model as input we construct a dynamically-consistent nonlinear dynamo model that takes into account the detailed description of the - effect, turbulent pumping, magnetic helicity balance, and magnetic feedback on the differential rotation and meridional circulation. The background mean-field hydrodynamic model of the solar convection zone accounts the solar-like angular velocity profile and the double-cell meridional circulation. We investigate an impact of the nonlinear magnetic field generation effects on the long-term variability and properties of the magnetic cycle. The nonlinear dynamo solutions are studied in the wide interval of the α effect parameter from a slightly subcritical to supercritical values. It is found that the magnetic cycle period decreases with the increasing cycle's magnitude. The periodic long-term variations of the magnetic cycle are excited in case of the overcritical α effect. These variations result from the hemispheric magnetic helicity exchange. It depends on the magnetic diffusivity parameter and the magnetic helicity production rate. The large-scale magnetic activity modifies the distribution of the differential rotation and meridional circulation inside convection zone. It is found that the magnetic feedback on the global flow affects the properties of the long-term magnetic cycles. We confront our findings with solar and stellar magnetic activity observations.

Authors: V.V. Pipin
Projects: None

Publication Status: JASTP (online)
Last Modified: 2018-08-08 11:37
Go to main E-Print page  Lost and found sunquake in the 6 September 2011 flare caused by beam electrons  Solar Kinetic Energy and Cross Helicity Spectra  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University