E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Solar radio emission as a disturbance of aeronautical radionavigation View all abstracts by submitter

Karl-Ludwig Klein   Submitted: 2018-08-22 04:31

On November 4th 2015 secondary air traffic control radar was strongly disturbed in Sweden and some other European countries. The disturbances occurred when the radar antennas were pointing at the Sun. In this paper, we show that the disturbances coincided with the time of peaks of an exceptionally strong (~105 Solar Flux Units) solar radio burst in a relatively narrow frequency range around 1 GHz. This indicates that this radio burst is the most probable space weather candidate for explaining the radar disturbances. The dynamic radio spectrum shows that the high flux densities are not due to synchrotron emission of energetic electrons, but to coherent emission processes, which produce a large variety of rapidly varying short bursts (such as pulsations, fiber bursts, and zebra patterns). The radio burst occurs outside the impulsive phase of the associated flare, about 30 minutes after the soft X-ray peak, and it is temporarily associated with fast evolving activity occurring in strong solar magnetic fields. While the relationship with strong magnetic fields and the coherent spectral nature of the radio burst provide hints towards the physical processes which generate such disturbances, we have so far no means to forecast them. Well-calibrated monitoring instruments of whole Sun radio fluxes covering the UHF band could at least provide a real-time identification of the origin of such disturbances, which reports in the literature show to also affect GPS signal reception.

Authors: Christophe Marqué, Karl-Ludwig Klein, Christian Monstein, Hermann Opgenoorth, Antti Pulkkinen, Stephan Buchert, Säm Krucker, Rudiger Van Hoof, Peter Thulesen
Projects: None

Publication Status: accepted for pubication in Journal of Space Weather and Space Climate
Last Modified: 2018-08-22 12:07
Go to main E-Print page  Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares   A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University