E-Print Archive

There are 4050 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares View all abstracts by submitter

Vahe Patrosian   Submitted: 2018-08-23 12:39

The Fermi gamma-ray Space Telescope (Fermi) has detected hard X-ray (HXR) and gamma-ray photons from three flares, which according to \stereo occurred in active regions behind the limb of the Sun as delineated by near Earth instruments. For two of these flares \r has provided HXR images with sources located just above the limb, presumably from the loop top (LT) region of a relatively large loop. Fermi-Gamma-ray Burst Monitor has detected HXRs and gamma-rays, and RSTN has detected microwaves emissions with similar light curves. This paper presents a quantitative analysis of these multiwavelength observations assuming that HXRs and microwaves are produced by electrons accelerated at the LT source, with emphasize on the importance of the proper treatment of escape of the particles from the acceleration-source region and the trans-relativistic nature of the analysis. The observed spectra are used to determine the magnetic field and relativistic electron spectra. It is found that a simple power-law in momentum (with cut off above a few 100 MeV) agrees with all observations, but in energy space a broken power law spectrum (steepening at ~ mc^2) may be required. It is also shown that the production of the >100 MeV photons detected by The Fermi-Large Area Telescope at the LT source would require more energy compared to photospheric emission. These energies are smaller than that required for electrons, so that the possibility that all the emissions originate in the LT cannot be ruled out on energetic grounds. However, the differences in the light curves and emission centroids of HXRs and >100 MeV gamma-rays favor a different source for the latter.

Authors: Vahé Petrosian
Projects: None

Publication Status: ApJ in press
Last Modified: 2018-08-27 11:22
Go to main E-Print page  The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares  Solar radio emission as a disturbance of aeronautical radionavigation  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University