E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares View all abstracts by submitter

Vahe Patrosian   Submitted: 2018-08-24 13:43

The relation between time scales of particle escape from and scattering in the acceleration regions of many space and astrophysical sources is of critical importance in the analysis of emission signatures produced by these particles and in the determination of the acceleration and transport mechanisms at work. This paper addresses this general problem, in particular in solar flares, where in addition to scattering by turbulence, the magnetic field convergence from the acceleration region towards the boundaries of the acceleration region also influences the particle escape. We test an analytical approximation of this relation with a numerical model of particle transport. To this end, a kinetic Fokker-Planck transport model of particles is solved with a stochastic differential equation scheme. This approach enables further insights into the phase-space dynamics of the transport process, which would otherwise not be accessible. We find that in general the numerical results agree well with the approximate analytic equation, however, there are also significant differences due to the initial pitch-angle distribution in a weak scattering regime. The results are important in the interpretation of observations of energetic particles in solar flares and other similar space and astrophysical acceleration sites, and for the determination of acceleration-transport coefficients, commonly used in Fokker-Planck type kinetic equations

Authors: Frederic Effenberger and Vahé Petrosian
Projects: None

Publication Status: Submitted to Astrophysical Journal
Last Modified: 2018-08-27 11:22
Go to main E-Print page  Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A  Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University