E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Coronal condensations caused by magnetic reconnection between solar coronal loops View all abstracts by submitter

Leping Li   Submitted: 2018-08-28 21:46

Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetically open structures, observed in AIA 171 Å images above the solar limb, move downward and interact with the lower-lying closed loops, resulting in the formation of dips in the former. An X-type structure forms at the interface. The interacting loops reconnect and disappear. Two sets of newly-reconnected loops then form and recede from the MR region. During the MR process, bright emission appears sequentially in the AIA 131 Å and 304 Å channels repeatedly in the dips of higher-lying open structures. This indicates the cooling and condensation process of hotter plasma from ~0.9 MK down to ~0.6 MK, and then to ~0.05 MK, also supported by the light curves of the AIA 171 Å, 131 Å, and 304 Å channels. The part of higher-lying open structures supporting the condensations participate in the successive MR. The condensations without support by underlying loops then rain back to the solar surface along the newly-reconnected loops. Our results suggest that the MR between coronal loops leads to the condensation of hotter coronal plasma and its downflows. MR thus plays an active role in the mass cycle of coronal plasma because it can initiate the catastrophic cooling and condensation. This underlines that the magnetic and thermal evolution has to be treated together and cannot be separated, even in the case of catastrophic cooling.

Authors: Leping Li, Jun Zhang, Hardi Peter, Lakshmi Pradeep Chitta, Jiangtao Su, Chun Xia, Hongqiang Song, Yijun Hou
Projects: SDO-AIA

Publication Status: 2018, ApJL, 864, L4
Last Modified: 2018-08-29 09:39
Go to main E-Print page  Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q  Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University