E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q View all abstracts by submitter

Donald V Reames   Submitted: 2018-08-30 12:52

We find that element abundances in energetic ions ccelerated by shock waves formed at corotating interaction regions (CIRs) mirror the abundances of the solar wind modified by a decreasing power-law dependence on the mass-to-charge ratio A/Q of the ions. This behavior is similar in character to the well-known power-law dependence on A/Q of abundances in large gradual solar energetic particles (SEP). The CIR ions reflect the pattern of A/Q, with Q values of the source plasma temperature or freezing-in temperature of 1.0 - 1.2 MK typical of the fast solar wind in this case. Thus the relative ion abundances in CIRs are of the form (A/Q)**a where a is nearly always negative and evidently decreases with distance from the shocks, which usually begin beyond 1 AU. For one unusual historic CIR event where a = 0, the reverse shock wave of the CIR seems to occur at 1 AU, and these abundances of the energetic ions become a direct proxy for the abundances of the fast solar wind.

Authors: Donald V. Reames
Projects: Wind

Publication Status: accepted by Solar Physics
Last Modified: 2018-08-31 11:22
Go to main E-Print page  SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission  Coronal condensations caused by magnetic reconnection between solar coronal loops  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University