E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop View all abstracts by submitter

James McLaughlin   Submitted: 2018-09-04 05:14

Synthetic intensity maps are generated from a 3D kink-unstable flux rope simulation using several DKIST/DL-NIRSP spectral lines to make a prediction of the observational signatures of energy transport and release. The reconstructed large field-of-view intensity mosaics and single tile sit-and-stare high-cadence image sequences show detailed, fine-scale structure and exhibit signatures of wave propagation, redistribution of heat, flows, and fine-scale bursts. These fine-scale bursts are present in the synthetic Doppler velocity maps and can be interpreted as evidence for small-scale magnetic reconnection at the loop boundary. The spectral lines reveal the different thermodynamic structures of the loop, with the hotter lines showing the loop interior and braiding and the cooler lines showing the radial edges of the loop. The synthetic observations of DL-NIRSP are found to preserve the radial expansion, and hence the loop radius can be measured accurately. The electron number density can be estimated using the intensity ratio of the Fe XIII lines at 10747 and 10798 Å . The estimated density from this ratio is correct to within ±10% during the later phases of the evolution; however, it is less accurate initially when line-of-sight density inhomogeneities contribute to the Fe XIII intensity, resulting in an overprediction of the density by ≈30%. The identified signatures are all above a conservative estimate for instrument noise and therefore will be detectable. In summary, we have used forward modeling to demonstrate that the coronal off-limb mode of DKIST/DL-NIRSP will be able to detect multiple independent signatures of a kink-unstable loop and observe small-scale transient features including loop braiding/twisting and small-scale reconnection events occurring at the radial edge of the loop.

Authors: Snow, B., Botha, G.J. J., Scullion, E., McLaughlin, J.A., Young, P.R. and Jaeggli, S.A.
Projects: DKIST/DL-NIRSP

Publication Status: [published, open access] Astrophysical Journal, 863, 172 (2018)
Last Modified: 2018-09-04 09:19
Go to main E-Print page  Reverse Current Model for Coronal Mass Ejection Cavity Formation  Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University