E-Print Archive

There are 4050 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673 View all abstracts by submitter

Ilya Chertok   Submitted: 2018-09-24 00:59

Based on our tool for the early diagnostics of solar eruption geoeffectiveness (EDSEG tool; Chertok et al., 2013, 2015, 2017), we have analyzed space weather disturbances that occurred in early September 2017. Two flares, SOL2017-09-04T20:33 (M5.5) and SOL2017-09-06T12:02 (X9.3), accompanied by Earth-directed halo coronal mass ejections (CMEs) were found to be geoeffective. We extracted the associated EUV dimmings and arcades and calculated their total unsigned magnetic flux. This calculation allowed us to estimate the possible scales of the Forbush decreases (FDs) and geomagnetic storms (GMSs) in the range from moderate to strong, and they are close to the observed scales. More precisely, after the first eruption, an FD approximately equal to 2% and almost no GMS occurred because the Bz magnetic field component in front of the corresponding interplanetary CME (ICME) was northern. The stronger second eruption produced somewhat larger composite disturbances (FD ~ 9.3% and GMS with indexes Dst ~ -144 nT, Ap ~ 235) than expected (FD ~ 4.4%, Dst ~ -135 nT, Ap ~ 125) because the second ICME overtook the trailing part of the first ICME near Earth, and the resulting Bz component was more intense and southern. Both ICMEs arrived at Earth earlier than expected because they propagated in the high-speed solar wind emanated from an extended coronal hole adjacent to AR12673 along their entire path. Overall, the presented results provide further evidence that the EDSEG tool can be used for the earliest diagnostics of actual solar eruptions to forecast the scale of the corresponding geospace disturbances.

Authors: I.M. Chertok, A.V. Belov, A.A. Abunin
Projects: GOES X-rays,SDO-AIA,SDO-HMI

Publication Status: Space Weather, accepted
Last Modified: 2018-09-24 13:09
Go to main E-Print page  Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions  Coronal hard X-ray sources revisited  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University