E-Print Archive

There are 4003 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions View all abstracts by submitter

Ju Jing   Submitted: 2018-10-02 09:14

A recent laboratory experiment of ideal magnetohydrodynamic instabilities revealed four distinct eruption regimes readily distinguished by the torus instability (TI) and helical kink instability (KI) parameters. To establish its observational counterpart, we collected 38 solar flares (stronger than GOES-class M5 in general) that took place withing 45° of disk center during 2011-2017, 26 of which are associated with a halo or partial halo coronal mass ejection (CME; i.e., ejective events), while the others are CME-less (i.e., confined events). This is a complete sample of solar events satisfying our selection criteria detailed in the paper. For each event, we calculate a decay index n of the potential strapping field above the magnetic flux rope (MFR) in and around the flaring magnetic polarity inversion line (a TI parameter) and the unsigned twist number Tw of the nonlinear force-free field lines forming the same MFR (a KI parameter). We then construct an n-Tw diagram to investigate how the eruptiveness depends on these parameters. We find that (1) Tw appears to play little role in discriminating between confined and ejective events; (2) the events with n ≳ 0.8 are all ejective, and all confined events have n ≲ 0.8. However, n ≳ 0.8 is not a necessary condition for eruption because some events with n ≲ 0.8 also erupted. In addition, we investigate the MFR's geometrical parameters, apex height, and distance between footpoints, as a possible factors for the eruptiveness. We briefly discuss the difference of the present result for solar eruptions with that of the laboratory result in terms of the role played by magnetic reconnection.

Authors: Ju Jing, Chang Liu, Jeongwoo Lee, Hantao Ji, Nian Liu, Yan Xu, and Haimin Wang
Projects: SDO-AIA,SDO-HMI,SoHO-LASCO

Publication Status: published in ApJ
Last Modified: 2018-10-02 10:55
Go to main E-Print page  Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach  Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University