E-Print Archive

There are 4050 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum View all abstracts by submitter

Marie Dominique   Submitted: 2018-10-24 01:59

We present the first detection of solar flare emission at middle-ultraviolet wavelengths around 2000 A by the channel 2 of the Large-Yield RAdiometer (LYRA) onboard the PROBA2 mission. The flare (SOL20170906) was also observed in the channel 1 of LYRA centered at the H I Lyman-α line at 1216 Å, showing a clear non-thermal profile in both channels. The flare radiation in channel 2 is consistent with the hydrogen Balmer continuum emission produced by an optically thin chromospheric slab heated up to 10000 K. Simultaneous observations in channels 1 and 2 allow the separation of the line emission (primarily from the Lyman-α line) from the Balmer continuum emission. Together with the recent detection of the Balmer continuum emission in the near-ultraviolet by IRIS, the LYRA observations strengthen the interpretation of broadband flare emission as the hydrogen recombination continua originating in the chromosphere.

Authors: Marie Dominique, Andrei N. Zhukov, Petr Heinzel, Ingolf E. Dammasch, Laurence Wauters, Laurent Dolla, Sergei Shestov, Matthieu Kretzschmar, Janet Machol, Giovanni Lapenta, Werner Schmutz
Projects: PROBA2/LYRA

Publication Status: Accepted in ApJL
Last Modified: 2018-10-24 10:42
Go to main E-Print page  Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection  First high-resolution look at the quiet Sun with ALMA at 3 mm  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University