E-Print Archive

There are 4050 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection View all abstracts by submitter

Astrid Veronig   Submitted: 2018-10-24 07:31

The X8.2 event of 10 September 2017 provides unique observations to study the genesis, magnetic morphology and impulsive dynamics of a very fast CME. Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot (T≈ 10-15 MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell (T≈ 1-2 MK). The CME shell develops from a dense set of large AR loops (≳0.5~Rs), and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current sheet beneath. The same structure is later observed as the core of the white light CME, challenging the traditional interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all reaching values of 5-10 km s-2. The acceleration peaks occur simultaneously with the first RHESSI 100-300 keV hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the CME shell causes a distinct deformation of the white light CME front and shock.

Authors: Astrid M. Veronig, Tatiana Podladchikova, Karin Dissauer, Manuela Temmer, Daniel B. Seaton, David Long, Jingnan Guo, Bojan Vrsnak, Louise Harra, Bernhard Kliem
Projects: GOES X-rays,SDO-AIA

Publication Status: ApJ (accepted)
Last Modified: 2018-10-24 10:42
Go to main E-Print page  Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma  First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University