E-Print Archive

There are 4003 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Lyman Continuum Observations of Solar Flares Using SDO/EVE View all abstracts by submitter

Ryan Milligan   Submitted: 2018-10-25 23:42

The Extreme ultraviolet Variability Experiment was designed to observe the Sun-as-a-star in the extreme ultraviolet; a wavelength range that has remained spectrally unresolved for many years. It has provided a wealth of data on solar flares, perhaps most uniquely, on the Lyman spectrum of hydrogen at high cadence and moderate spectral resolution. In this paper we concentrate on the analysis of Lyman continuum (LyC) observations and its temporal evolution in a sample of six major solar flares. By fitting both the pre-flare and flare excess spectra with a blackbody function we show that the color temperature derived from the slope of LyC reveals temperatures in excess of 104 K in the six events studied; an increase of a few thousand Kelvin above quiet-Sun values (typically ~8000-9500 K). This was found to be as high as 17000 K for the 2017 September 6 X9.3 flare. Using these temperature values, and assuming a flaring area of 1018 cm2, estimates of the departure coefficient of hydrogen, b1, were calculated. It was found that b1 decreased from 102-103 in the quiet-Sun, to around unity during the flares. This implies that LyC is optically thick and formed in local thermodynamic equilibrium during flares. It also emanates from a relatively thin (≲100 km) shell formed at deeper, denser layers than in the quiescent solar atmosphere. We show that in terms of temporal coverage and resolution, EVE gives a more comprehensive picture of the response of the chromosphere to the flare energy input with respect to those of the Skylab/Harvard College Observatory spatially resolved observations of the 1970's.

Authors: Marcos E. Machado, Ryan O. Milligan, Paulo J. A. Simões
Projects: None

Publication Status: Accepted for publication in ApJ.
Last Modified: 2018-10-26 11:49
Go to main E-Print page  On the Extrapolation of Magnetohydrostatic Equilibria on the Sun  Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University