E-Print Archive

There are 3977 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Lyman Continuum Observations of Solar Flares Using SDO/EVE View all abstracts by submitter

Ryan Milligan   Submitted: 2018-10-25 23:42

The Extreme ultraviolet Variability Experiment was designed to observe the Sun-as-a-star in the extreme ultraviolet; a wavelength range that has remained spectrally unresolved for many years. It has provided a wealth of data on solar flares, perhaps most uniquely, on the Lyman spectrum of hydrogen at high cadence and moderate spectral resolution. In this paper we concentrate on the analysis of Lyman continuum (LyC) observations and its temporal evolution in a sample of six major solar flares. By fitting both the pre-flare and flare excess spectra with a blackbody function we show that the color temperature derived from the slope of LyC reveals temperatures in excess of 104 K in the six events studied; an increase of a few thousand Kelvin above quiet-Sun values (typically ~8000-9500 K). This was found to be as high as 17000 K for the 2017 September 6 X9.3 flare. Using these temperature values, and assuming a flaring area of 1018 cm2, estimates of the departure coefficient of hydrogen, b1, were calculated. It was found that b1 decreased from 102-103 in the quiet-Sun, to around unity during the flares. This implies that LyC is optically thick and formed in local thermodynamic equilibrium during flares. It also emanates from a relatively thin (≲100 km) shell formed at deeper, denser layers than in the quiescent solar atmosphere. We show that in terms of temporal coverage and resolution, EVE gives a more comprehensive picture of the response of the chromosphere to the flare energy input with respect to those of the Skylab/Harvard College Observatory spatially resolved observations of the 1970's.

Authors: Marcos E. Machado, Ryan O. Milligan, Paulo J. A. Simões
Projects: None

Publication Status: Accepted for publication in ApJ.
Last Modified: 2018-10-26 11:49
Go to main E-Print page  On the Extrapolation of Magnetohydrostatic Equilibria on the Sun  Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University