E-Print Archive

There are 4003 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun View all abstracts by submitter

Xiaoshuai Zhu   Submitted: 2018-10-29 15:34

Modeling the interface region between the solar photosphere and corona is challenging because the relative importance of magnetic and plasma forces change by several orders of magnitude. While the solar corona can be modeled by the force-free assumption, we need to take plasma forces into account (pressure gradient and gravity) in photosphere and chromosphere, here within the magnetohydrostatic (MHS) model. We solve the MHS equations with the help of an optimization principle and use vector magnetogram as the boundary condition. Positive pressure and density are ensured by replacing them with two new basic variables. The Lorentz force during optimization is used to update the plasma pressure on the bottom boundary, which makes the new extrapolation work even without pressure measurements on the photosphere. Our code is tested using a linear MHS model as reference. From the detailed analyses, we find that the newly developed MHS extrapolation recovers the reference model at high accuracy. The MHS extrapolation is, however, numerically more expensive than the nonlinear force-free field extrapolation and consequently one should limit their application to regions where plasma forces become important, e.g., in a layer of about 2 Mm above the photosphere.

Authors: Xiaoshuai Zhu, Thomas Wiegelmann
Projects: None

Publication Status: ApJ, 866,130
Last Modified: 2018-10-31 12:08
Go to main E-Print page  Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST  Lyman Continuum Observations of Solar Flares Using SDO/EVE  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University