E-Print Archive

There are 4003 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption View all abstracts by submitter

Chaowei Jiang   Submitted: 2018-10-30 21:05

Solar eruptions, mainly eruptive flares with coronal mass ejections, represent the most powerful drivers of space weather. Due to the low plasma-β nature of the solar corona, solar eruption has its roots in the evolution of the coronal magnetic field. Although various theoretical models of the eruptive magnetic evolution have been proposed, they still oversimplify the realistic process in observation, which shows a much more complex process due to the invisible complex magnetic environment. In this paper, we continue our study of a complex sigmoid eruption in solar active region 11283, which is characterized by a multipolar configuration embedding a null-point topology and a sigmoidal magnetic flux rope. Based on extreme ultraviolet observations, it has been suggested that a three-stage magnetic reconnection scenario might explain the complex flare process. Here we reproduce the complex magnetic evolution during the eruption using a data-constrained high-resolution magnetohydrodynamic (MHD) simulation. The simulation clearly demonstrates three reconnection episodes, which occurred in sequence in different locations in the corona. Through these reconnections, the initial sigmoidal flux rope breaks one of its legs, and quickly gives birth to a new tornado-like magnetic structure that is highly twisted and has multiple connections to the Sun due to the complex magnetic topology. The simulated magnetic field configuration and evolution are found to be consistent with observations of the corona loops, filaments, and flare ribbons. Our study demonstrates that significant insight into a realistic, complex eruption event can be gained by a numerical MHD simulation that is constrained or driven by observed data.

Authors: Chaowei Jiang, Xueshang Feng, and Qiang Hu

Publication Status: Published in ApJ
Last Modified: 2018-10-31 12:08
Go to main E-Print page  Physical processes involved in the EUV ?Surge? Event of 09 May 2012  Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University