E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Physical processes involved in the EUV "Surge" Event of 09 May 2012 View all abstracts by submitter

Marcelo Lopez Fuentes   Submitted: 2018-11-01 09:54

We study an EUV confined ejection observed on 09 May 2012 in active region (AR) NOAA 11476. For the analysis we use observations in multiple wavelengths (EUV, X-rays, Hα, and magnetograms) from a variety of ground-based and space instruments. The magnetic configuration showed the presence of two rotating bipoles within the following polarity of the AR. This evolution was present along some tens of hours before the studied event and continued even later. During this period the magnetic flux of both bipoles was continuously decreasing. A minifilament with a length of ≈ 30" lay along the photospheric inversion line of the largest bipole. The minifilament was observed to erupt accompanied by an M4.7 flare (SOL20120509T12:23:00). Consequently, dense material, as well as twist, was injected along closed loops in the form of a very broad ejection whose morphology resembles that of typical Hα surges. We conclude that the flare and eruption can be explained as due to two reconnection processes, one occurring below the erupting minifilament and another one above it. This second process injects the minifilament plasma within the reconnected closed loops linking the main AR polarities. Analyzing the magnetic topology using a force-free model of the coronal field, we identify the location of quasi- separatix layers (QSLs), where reconnection is prone to occur, and present a detailed interpretation of the chromospheric and coronal eruption observations.

Authors: Marcelo Lopez-Fuentes, Cristina H. Mandrini, Mariano Poisson, Pascal Demoulin, German Cristiani, Fernando M. Lopez, Maria Luisa Luoni
Projects: None

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2018-11-01 10:36
Go to main E-Print page  Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties  Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University