E-Print Archive

There are 3977 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties View all abstracts by submitter

Eo-Jin Lee   Submitted: 2018-11-03 21:16

A solar active region (AR) that produces at least one M- or X-class major flare tends to produce multiple flares during its passage across the solar disk. It will be interesting if we can estimate how flare-productive a given major flaring AR is for a time interval of several days, by investigating time series of its photospheric magnetic field properties. For this, we studied 93 major flaring ARs observed from 2010 to 2016 by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). More specifically, for each AR under study, the mean and fluctuation were calculated from an 8-day time series of each of 18 photospheric magnetic parameters extracted from the Space-weather HMI Active Region Patch (SHARP) vector magnetogram products at 12-min cadence. We then compared these with the AR's 8-day flare index, which is defined as the sum of soft X-ray peak fluxes of flares produced in the AR during the same interval of the 8-day SHARP parameter time series. As a result, it is found that the 8-day flare index is well correlated with the mean and/or fluctuation values of some magnetic parameters (with correlation coefficients of 0.6-0.7 in log-log space). Interestingly, the 8-day flare index shows a slightly better correlation with the fluctuation than the mean for the SHARP parameters associated with the surface integral of photospheric magnetic free energy density. We also discuss how the correlation varies if the 8-day flare index is compared with the mean or fluctuation calculated from an initial portion of the SHARP parameter time series.

Authors: Eo-Jin Lee, Sung-Hong Park, Yong-Jae Moon
Projects: GOES X-rays,SDO-HMI

Publication Status: Solar Physics (accepted)
Last Modified: 2018-11-05 14:16
Go to main E-Print page   Transition-region explosive events produced by plasmoid instability  Physical processes involved in the EUV ?Surge? Event of 09 May 2012  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University