E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192 View all abstracts by submitter

Ting Li   Submitted: 2018-11-08 19:15

We present an extensive analysis of the X2.0-class confined flare on 2014 October 27 in the great active region AR 12192, observed by the IRIS and the SDO. The slipping motion of the substructures within the negative-polarity flare ribbon (R1) and continual reconnection-induced flows during the confined flare are first presented. The substructures within ribbon R1 were observed to slip in opposite directions at apparent speeds of 10-70 km s-1. The slipping motion exhibited the quasi-periodic pattern with a period of 80-110 s, which can be observed since the flare start and throughout the impulsive phase of the flare. Simultaneously quasi-periodic flows moved along a reverse-S shaped filament, with an average period of about 90 s. The period of reconnection-induced flows is similar to that of the slippage of ribbon substructures, implying the occurrence of quasi-periodic slipping magnetic reconnection. The spectral observations showed that the Si IV line was blueshifted by 50-240 km s-1 at the location of the flows. During the process of the flare, the filament did not show the rise phase and was not associated with any failed eruption. The flare mainly consisted of two sets of magnetic systems, with both of their east ends anchoring in ribbon R1. We suggest that the slipping magnetic reconnection between two magnetic systems triggers the confined flare.

Authors: Ting Li, Yijun Hou, Shuhong Yang & Jun Zhang
Projects: IRIS

Publication Status: accepted for publication in ApJ
Last Modified: 2018-11-09 15:38
Go to main E-Print page  Drifting of the line-tied footpoints of CME flux-ropes  Oscillations accompanying a He I 10830 ? negative flare in a solar facula  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops
Spectroscopic EUV observations of impulsive solar energetic particle event sources
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University