E-Print Archive

There are 4003 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops View all abstracts by submitter

Leping Li   Submitted: 2018-11-21 18:38

Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength im- ages, we have presented coronal condensations caused by magnetic reconnection between a system of open and closed solar coronal loops. In this Letter, we report the quasi-periodic fast magnetoacoustic waves propagating away from the reconnection region upward across the higher-lying open loops dur- ing the reconnection process. On 2012 January 19, reconnection between the higher-lying open loops and lower-lying closed loops took place, and two sets of newly reconnected loops formed. Thereafter, cooling and condensations of coronal plasma occurred in the magnetic dip region of higher-lying open loops. During the reconnection process, disturbances originating from the reconnection region prop- agate upward across the magnetic dip region of higher-lying loops with the mean speed and mean speed amplitude of 200 and 30 km s-1, respectively. The mean speed of the propagating disturbances decreases from ∼230 km s-1 to ∼150 km s-1 during the coronal condensation process, and then in- creases to ∼220 km s-1. This temporal evolution of the mean speed anti-correlates with the light curves of the AIA 131 and 304 Å channels that show the cooling and condensation process of coronal plasma. Furthermore, the propagating disturbances appear quasi-periodically with a peak period of 4 minutes. Our results suggest that the disturbances represent the quasi-periodic fast propagating magnetoacoustic (QFPM) waves originating from the magnetic reconnection between coronal loops.

Authors: Li, L. P., Zhang, J., Peter, H., Chitta, L. P., Su, J. T., Song, H. Q., Xia, C., Hou, Y. J.
Projects: SDO-AIA

Publication Status: accepted for publication in ApJL
Last Modified: 2018-11-22 20:10
Go to main E-Print page  Study of current sheets in the wake of two crossing filaments eruption  Spectroscopic EUV observations of impulsive solar energetic particle event sources  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University