E-Print Archive

There are 4236 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun View all abstracts by submitter

Roberto Soler   Submitted: 2018-12-05 00:00

In the solar atmosphere, Alfvén waves are believed to play an important role in the transfer of energy from the photosphere to the corona and solar wind, and in the heating of the chromosphere. We perform numerical computations to investigate energy transport and dissipation associated with torsional Alfvén waves propagating in magnetic flux tubes that expand from the photosphere to the corona in quiet-Sun conditions. We place a broadband driver at the photosphere that injects a wave energy flux of 107 erg cm-2 s-1 and consider Ohm's magnetic diffusion and ion-neutral collisions as dissipation mechanisms. We find that only a small fraction of the driven flux, ∼105 erg cm-2 s-1, is able to reach coronal heights, but it may be sufficient to partly compensate the total coronal energy loss. The frequency of maximal transmittance is ∼5 mHz for a photospheric field strength of 1 kG and is shifted to smaller/larger frequencies for weaker/stronger fields. Lower frequencies are reflected at the transition region, while higher frequencies are dissipated producing enough heat to balance chromospheric radiative losses. Heating in the low and middle chromosphere is due to Ohmic dissipation, while ion-neutral friction dominates in the high chromosphere. Ohmic diffusion is enhanced by phase mixing because of the expansion of the magnetic field. This effect has the important consequence of increasing the chromospheric dissipation and, therefore, reducing the energy flux that reaches the corona. We provide empirical fits of the transmission coefficient that could be used as input for coronal models.

Authors: R. Soler, J. Terradas, R. Oliver, J. L. Ballester
Projects: None

Publication Status: Accepted in ApJ
Last Modified: 2018-12-05 12:05
Go to main E-Print page  Modeling of the sunspot-associated microwave emission using a new method of DEM inversion  A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University